An interior point method for nonlinear programming with infeasibility detection capabilities

نویسندگان

  • Jorge Nocedal
  • Figen Öztoprak
  • Richard A. Waltz
چکیده

This paper describes interior point methods for nonlinear programming endowed with infeasibility detection capabilities. The methods are composed of two phases, a main phase whose goal is to seek optimality, and a feasibility phase that aims exclusively at improving feasibility. A common characteristic of the algorithms is the use of a step-decomposition interior-point method in which the step is the sum of a normal component and a tangential component. The normal component of the step provides detailed information that allows the algorithm to determine whether it should be in main phase or feasibility phase. We give particular attention to the reliability of the switching mechanism between the two phases. The two algorithms proposed in this paper have been implemented in the knitro package as extensions of the knitro/cg and knitro/direct methods. Numerical results illustrate the performance of our methods on both feasible and infeasible problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Interior-point Methods within an Outer Approximation Framework for Mixed Integer Nonlinear Programming

Interior-point methods for nonlinear programming have been demonstrated to be quite efficient, especially for large scale problems, and, as such, they are ideal candidates for solving the nonlinear subproblems that arise in the solution of mixed-integer nonlinear programming problems via outer approximation. However, traditionally, infeasible primal-dual interior-point methods have had two main...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems

In this paper we present several \infeasible-start" path-following and potential-reduction primal-dual interior-point methods for nonlinear conic problems. These methods try to nd a recession direction of the feasible set of a self-dual homogeneous primal-dual problem. The methods under consideration generate an-solution for an-perturbation of an initial strictly (primal and dual) feasible prob...

متن کامل

A penalty-interior-point algorithm for nonlinear constrained optimization

Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization due ...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014